Publications
High-frequency Optimally Windowed Chirp rheometry for rapidly evolving viscoelastic materials: application to a crosslinking thermoset
Thanasis Athanasiou, Michela Geri, Patrice Roose, Gareth H. McKinley, George Petekidis
arXiv:2405.07721 [cond-mat.soft]
Knowledge of the evolution of mechanical properties of the curing matrix is of great importance in composite parts or structure fabrication. Conventional rheometry, based on small amplitude oscillatory shear is limited by long interrogation times. In rapidly evolving materials, time sweeps can provide a meaningful measurement albeit at a single frequency. To overcome this constraint we utilize a combined frequency and amplitude-modulated chirped strain waveform in conjunction with a home-made sliding plate piezo-operated (PZR) and a dual-head commercial rotational rheometer (Anton Paar MCR 702) to probe the linear viscoelasticity of these time-evolving materials. The direct controllability of the PZR resulting from the absence of any kind of firmware and the microsecond actuator-sensor response renders this device ideal for exploring the advantages of this technique. The high frequency capability allows us to extend the upper limits of the accessible linear viscoelastic spectrum and most importantly, to shorten the length of the interrogating strain signal (OWCh-PZR) to sub-second scales, while retaining a high time-bandwidth product. This short duration ensures that the mutation number (NMu) is kept sufficiently low, even in fast curing resins. The method is validated via calibration tests in both instruments and the corresponding limitations are discussed. As a proof of concept the technique is applied to a curing vinylester resin. The linear viscoelastic (LVE) spectrum is assessed every 20 seconds to monitor the rapid evolution of the time- and frequency-dependence of the complex modulus. Finally, FTIR spectroscopy is utilized to gain insights on the evolution of the chemical network while the gap-dependence of the evolving material properties in these heterogeneous systems is also investigated.
Pickering emulgels reinforced with host–guest supramolecular inclusion complexes for high fidelity direct ink writing*
Bo Pang, Rubina Ajdary, Markus Antonietti, Orlando Rojas And Svitlana Filonenko
Mater. Horiz., 9, 835 (2022)
https://pubs.rsc.org/en/content/articlehtml/2022/mh/d1mh01741a
* Publication relevant to FORGREENSOFT, published before the start of the project"
Direct ink writing (DIW) of Pickering emulsions offers great potential for constructing on-demand objects. However, the rheological properties of fluid emulsions greatly undermines the shape fidelity and structural integrity of 3D-printed structures. We solve here these challenges and realize a new route towards complex constructs for actual deployment. A dynamic, supramolecular host– guest hydrogel based on poly(ethylene glycol) and a-cyclodextrin was synthesized in the continuous phase of cellulose nanocrystalstabilized Pickering emulsions. The storage modulus of the obtained emulgels could reach up to B113 kPa, while being shear thinning and yielding precise printability. Diverse complex architectures were possible with high shape fidelity and structural integrity. The printed objects, for example a double-wall cylinder with 75 layers, demonstrated excellent dimensional stability (shrinkage of 7 2% after freeze-drying). With the merits of a simple fabrication process and the high biocompatibility of all the components, the concept of dynamic supramolecular hydrogel-reinforced emulgels represent a potentially versatile route to construct new materials and structures VIA DIW for use in bioproducts and biomedical devices.
Residual stresses in colloidal gels *
A combination of experiments and Brownian Dynamics (BD) simulations is utilized to examine internal stresses in colloidal gels brought to rest from steady shear at different shear rates. A model colloidal gel with intermediate volume fraction is chosen where attractions between particles are introduced by adding non-adsorbing linear polymer chains. After flow cessation, the gel releases the stress in two distinct patterns: at high shear rates, where shear forces dominate over attractive forces, the shear-melted gel behaves as a liquid and releases stresses to zero after flow cessation. After low shear rates, though, stresses relax only partially, similar to the response of hard sphere glasses and jammed soft particles. The balance between shear and attractive forces which determines the intensity of structural distortion controls the amplitude of the residual stresses through a universal scaling. Stress decomposition to repulsive and attractive contributions in BD simulations reveals that internal stresses mainly originate from attractive forces. Moreover, analysis of particle dynamics indicates that internal stresses are associated with sub-diffusive particle displacements on average smaller than the attraction range as such short-range displacements are not sufficient to completely erase structural anisotropy caused during the course of shear.